Physics-Informed Digital Twin with Parameter Refinement for a Field-Trial C+L-Band Transmission Link

Yuchen Song(1), Min Zhang (1), Yan Shi (2), Yu Tang (2), Yakun Hu (2), Shikui Shen, and Danshi Wang (1),*

(1) State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China, *danshi_wang@bupt.edu.cn, (2) China Unicom Research Institute, Beijing, 100044, China.

Abstract Physics-informed neural operator is learned for multi-channel power evolution and facilitates the parameter refinement for accurate physical layer digital twin, which is demonstrated in a field-trial C+L-band link over different loadings, showing maximum 2.4dB and 1.4dB accuracy improvement for channel power prediction and QoT estimation. ©2023 The Author(s)

Introduction Physical-layer digital twin (PHY-DT) attempts to simulate and interact with physical transmission link in real-time and is becoming the cornerstone of the intent-based network control for the intelligent optical networks [1-3]. The accurate estimation of Quality of Transmission (QoT) is crucial for PHY-DT to increase network capacity by exploiting system margin [4] and to facilitate online maintenance throughout the network's lifespan, e.g., amplifier configuration, resource allocation, and fault recovery [5-8]. As the growing data traffic, it is desired to upgrade to C+L-band transmission [9], which brings stronger Kerr nonlinearities and stimulated Raman scattering (SRS) effect, thereby magnifying the complexity and indispensability of PHY-DT.

In contrast to lab experimental testbeds with controlled conditions, field-trial scenarios face severe problems of parameter uncertainties, which necessitates the online parameter refinement for accurate PHY-DT. Particularly, uncertain lump losses before and after each fibre span (i.e., due to lossy splice) will strongly affect the accuracies of the estimation of power and QoT, which have been investigated in [10,11] for C-band transmission. However, when upgrading to L-band transmission [9], this issue is more intricate due to the disparate lump losses for C and L-band resulting from the separate span amplification. Furthermore, the wider transmission band introduces unneglectable frequency-dependent fibre attenuation and SRS, which has been proved to be important for wideband QoT estimation [12]. The strength of SRS was identified in [13] for various fibres but using time-consuming differential evolution.

The operational speed is critical for PHY-DT. With closed-form perturbation-based nonlinear interference (NLI) estimation [14], the speed bottleneck lies on the computation of fibre channel power evolution, which requires iterative numerical methods to solve a large set of ordinary differential equations (ODEs) [15,16]. Accordingly, a closed-form expression was derived in [17] with sacrificed accuracy. Deep learning-based methods have been proposed for end-to-end modelling in a data-driven manner [16]. However, these methods rely heavily on massive data collection and do not guarantee adherence to underlying physical laws, rendering them unreliable compared to methods based on prior knowledge. To overcome these limitations, recently proposed physics-informed neural networks incorporate physical laws as constraints within the loss function [18,19]. This unique feature makes them well-suited for reliable modelling [20] and parameter identification [21,22].

In this paper, we develop a PHY-DT that utilizes physics-informed modelling techniques for a field-trial C+L-band transmission link. Physics-informed neural operator is learned for channel power evolution in fibre, which improves the calculation speed and ensures compliance with physical laws. In particular, the incorporation of physical laws enables the refinement of lump losses, frequency-dependent attenuation, and SRS strength. Compared to coarse datasheet parameters, the results after refinement yield maximum 2.4dB and 1.4dB improvement for channel power prediction and QoT estimation.

Physics-informed physical layer digital twin

The proposed physics-informed PHY-DT comprises two main modules: fibre and erbium-doped fibre amplifier (EDFA), describing the power evolution along the link and the accumulation of NLI and amplified spontaneous emission (ASE) noise. For NLI power calculation ($PNLI$), closed-form Gaussian noise (GN) model considering SRS effect is employed [23]. The EDFA model adds ASE noise power ($PASE$) and modifies channel power (Pn) with frequency-dependent gain and noise figure profiles. For the multi-channel power evolution in fibre, the governing equation concerning frequency-dependent attenuation and SRS is shown below.
Channel power/QoT prediction

NF Signal
Refined parameters
NLI ASE Signal
α
r
GN model
EDFA

Takes input channel powers
trunk net (TN) [25]. The TN samples the
neural networks: the branch net (BN) and the
deep neural operator (DeepONet) comprises two
As shown in the top of Fig. 1, the structure of
refinement of parameters within Eq. (1).
evolution operator (PEO) but also enables the
denoted as

disjointed amplification of C- and L-band. OCM
in other sites, in-line EDFA is deployed for
second site for channel power equalization, while
86.4km (totalling 469.3km of G.652 SMF). A
amplified spans with a maximum length of

For calculation of channel power P_n in fibre, Eq.
(1) is typically solved using numerical split-step
methods. These methods are computationally
expensive with small step size over long
transmission, resulting in the increased
calculation time of the PHY-DT. In this study, we
learn Eq. (1) using a closed-form neural operator
in a physics-informed way, as illustrated in the top
of Fig. 1. Notably, unlike data-driven neural
networks that rely on massive labelled data
collection, physics-informed neural operator
incorporates the underlying physics [24], i.e., Eq.
(1) describing power evolution, as a constraint in
the loss function without any labelled data. This
incorporation of physical laws not only enhances
the generalization ability of the learned power
evolution operator (PEO) but also enables the
refinement of parameters within Eq. (1).

As shown in the top of Fig. 1, the structure of
deep neural operator (DeepONet) comprises two
networks: the branch net (BN) and the
trunk net (TN) [25]. The TN samples the
transmission distance z as inputs while the BN
takes input channel powers s_0 of different
loadings as input. The PEO outputs at given z,
denoted as $P_n(z, \theta)$, are obtained by merging two
net outputs by a vector product. s_0 is learned
through the condition loss at $z=0$. For the physics-
informied regularization of PEO, $f(z, \theta, \alpha, r)$ is
minimized at random z as depicted in Fig. 1. For
each span, the collection of physical parameters
to be refined is denoted as $\Lambda = \{\alpha, r, \delta_\text{in,C(L)}, \delta_\text{out,C(L)}\}$ with the last two being the lump losses at
the input and output for C(L)-band. When Λ are
known, only the PEO parameter θ is updated,
enabling the derivation of $P_n(z, \theta)$ satisfying Eq.
(1) and s_0. It should be emphasized that the
physical regularization of $P_n(z, \theta)$ requires no
labelled data, and the differential term in f can be
calculated efficiently using the automatic
differentiation built in deep learning libraries.

Physics-informed methods are well-suited for
parameter refinement tasks due to their inherent
incorporation of physical parameters. The PEO is
able for the refinement of Λ with the knowledge
of span output channel power s_0, measured by
optical channel monitoring (OCM). A pre-trained
PEO is employed as it can provide a suitable
starting point. Λ are updated along with the
network parameters θ, ensuring the satisfaction
of the constraints f and the boundary conditions
at $z=0$ and $z=z_{\text{max}}$ as illustrated in Fig. 1.

Field-trial C+L-band transmission link
The field-trial C48+L48 WDM transmission link
under analysis in China Unicom’s metro optical
networks is illustrated in Fig. 1. It consists of six
amplified spans with a maximum length of
86.4km (totalling 469.3km of G.652 SMF). A
dynamic gain equalizer (DGE) is placed at the
second site for channel power equalization, while
in other sites, in-line EDFA is deployed for
separated amplification of C- and L-band. OCM
is placed at the front and end of EDFA for channel
power collection. Three commercial 400Gb/s
transponders on the C-band and two on the L-
band are configured for five channels under test
(CUT), and PCS-16QAM with 91.6 baud rate is
modulated for optical transmission with 100GHz channel spacing. In the transceiver side, signals are mux/demux by ROADM, and other channels are filled with filtered ASE noise for full loading on C+L-band. The transmission bandwidth occupies the L-band, from 186.1 THz to 190.8 THz, and the C-band, from 191.4 THz to 196.1 THz with a total of 96 channels. We focus on the transmission from west to east station in this paper. The state of the network, including channel powers and EDFA config, was obtained by querying via controller. The link has been configured to an optimal performance by a vendor controller.

Simulations for real-time forward prediction
First, we select 5,000 different s_0 at $z=0$ with random loadings to train this PEO, and for each channel, the launch power was either 0mW or varied between 0.1mW to 8mW. The transmission distance is sampled from 0 to 120km. Approximately 1 hour was paid in the training process with GPU Tesla T4. However, once trained, the PEO can generalize well to unseen s_0 thanks to the guidance of physical laws. Fig. 2(a) reports testing results after 120km transmission, with one full loading of uniform 1mW launch power and a case of 80% random loading. Both results agree well with the numerical split-step methods of 100m step size, and the statistical test results are displayed in Fig. 2(b). For testing cases with 1,000 new random loadings and within 120km, the normalized root mean-square-error (RMSE) generally falls in 1×10^{-4}. It can be observed that the accuracy decreases a bit with longer distance and more channels. The time can be reduced by up to 100 times using the closed-form PEO compared to numerical methods in this set up (network size is shown in Fig. 1). The PEO serves as a fast yet accurate solver for channel power prediction.

Field-trial validations of PHY-DT
We take the first span of this operating field-trial link as an example, the coarse data-sheet parameters of Λ are $\beta_{0}^{\text{out}}, \epsilon_{0}=1\text{dB}$, $\alpha=0.21\text{dB/km}$, and $r=1$. Eight pairs of channel powers before and after this span measured by OCM along the regular operations are used as boundary conditions. The updating trace of these refined parameters are depicted in Fig. 2(c)(d). This process can be done parallelly for each span. With these refined parameters, the prediction accuracy for channel power and QoT can be improved. The results for full loading are shown in Fig. 2(e)(f), and the accuracy of power is improved from 1.1 to 0.12 (RMSE in dB units) with a per-channel accuracy improvement of 0.8dB in average and 2.4dB in max. For CUT, the measured OSNR are delivered from controller, and the GSNR is derived from pre-FEC BER. The maximum per channel accuracy improvement of OSNR and GSNR for CUT is 1.6 and 1.4dB, respectively. For partial loading of C- and L-band, where the ASE channels are removed, the accuracy is overall improved as shown in Fig. 2(g)(h). It is worth noting that our approach remains effective even without OCM at the front of EDFA. In such cases, the non-flat gain profile can be absorbed in the refined parameters.

Conclusions
The effectiveness of physics-informed PHY-DT has been demonstrated on a field-trial C+L-band transmission link. The physics-informed PEO significantly reduces the operation time of PHY-DT without compromising accuracy and enables online parameter refinement, resulting in a QoT estimation error reduction of up to 1.4dB across different loadings. This paper paves the way for the use of hybrid data and physics-based methods for PHY-DT in optical networks.

Acknowledgements
National Natural Science Foundation of China (No. 62171053, 61975020) and BUPT Excellent Ph.D. Students Foundation (No. CX2022123).
References